
Page 1 of 11

© Annals of Translational Medicine. All rights reserved. Ann Transl Med 2016;4(14):266atm.amegroups.com

Review Article

Optimized tumor cryptic peptides: the basis for universal neo-
antigen-like tumor vaccines

Jeanne Menez-Jamet, Catherine Gallou, Aude Rougeot, Kostas Kosmatopoulos

Vaxon Biotech, 3 rue de l’Arrivée 75015, Paris, France

Contributions: (I) Conception and design: All authors; (II) Administrative support: All authors; (III) Provision of study materials or patients: All 

authors; (IV) Collection and assembly of data: All authors; (V) Data analysis and interpretation: All authors; (VI) Manuscript writing: All authors; (VII) 

Final approval of manuscript: All authors.

Correspondence to: Kostas Kosmatopoulos. Vaxon Biotech, 3 rue de l’Arrivée 75015, Paris, France. Email: kkosmatopoulos@vaxon-biotech.com.

Abstract: The very impressive clinical results recently obtained in cancer patients treated with immune response 

checkpoint inhibitors boosted the interest in immunotherapy as a therapeutic choice in cancer treatment. However, 

these inhibitors require a pre-existing tumor specific immune response and the presence of tumor infiltrating T 

cells to be efficient. This immune response can be triggered by cancer vaccines. One of the main issues in tumor 

vaccination is the choice of the right antigen to target. All vaccines tested to date targeted tumor associated antigens 

(TAA) that are self-antigens and failed to show a clinical efficacy because of the immune self-tolerance to TAA. A 

new class of tumor antigens has recently been described, the neo-antigens that are created by point mutations of 

tumor expressing proteins and are recognized by the immune system as non-self. Neo-antigens exhibit two main 

properties: they are not involved in the immune self-tolerance process and are immunogenic. However, the majority 

of the neo-antigens are patient specific and their use as cancer vaccines requires their previous identification in each 

patient individualy that can be done only in highly specialized research centers. It is therefore evident that neo-

antigens cannot be used for patient vaccination worldwide. This raises the question of whether we can find neo-

antigen like vaccines, which would not be patient specific. In this review we show that optimized cryptic peptides 

from TAA are neo-antigen like peptides. Optimized cryptic peptides are recognized by the immune system as non-

self because they target self-cryptic peptides that escape self-tolerance; in addition they are strongly immunogenic 

because their sequence is modified in order to enhance their affinity for the HLA molecule. The first vaccine based 

on the optimized cryptic peptide approach, Vx-001, which targets the widely expressed tumor antigen telomerase 

reverse transcriptase (TERT), has completed a large phase I clinical study and is currently being tested in a 

randomized phase II trial in non-small cell lung cancer (NSCLC) patients.
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The recent advances in cancer treatment with immune 
response checkpoint inhibitors demonstrated that 
immunotherapy may play a key role in cancer therapy. 
Immune response checkpoint inhibitors are very efficient in 
patients with tumors highly infiltrated with tumor specific T 
cells. These tumor specific T cells can be triggered in non-
immunogenic tumors or further amplified in immunogenic 
tumors by tumor vaccines.

The central problem in tumor vaccination is the choice 
of the optimal antigen to target.

Tumor antigens may be distinguished into two distinct 
groups:

(I)	 The tumor associated antigens (TAA) that are 
normal proteins expressed by tumors but also by 
normal cells (self-antigens). Their very frequent 
expression by tumors made them very appealing 
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candidates for broad-spectrum tumor vaccination. 
However, to date all the vaccines targeting TAA, 
which were tested in clinical studies, failed to show 
clinical efficacy. This is due to the fact that the 
immune system is tolerant to TAA because they 
are self-antigens (self-tolerance). Tolerance to TAA 
leads to the elimination or inactivation of all the 
TAA-specific high-affinity T cells that are the most 
efficient in inducing antitumor immunity;

(II)	 The tumor specific antigens (TSA) that are 
abnormal proteins harboring somatic mutations. 
These mutations are either responsible for tumor 
transformation and may be shared by different 
tumors (driver mutations) or are the byproduct of 
the genomic instability of tumors and very often 
are patient specific (passenger mutations) (1-3). 
Passenger mutations are the most common cancer 
mutations. All these mutations can create T cell 
reactive epitopes (neo-epitopes or neo-antigens) 
that are not involved in the self-tolerance process 
are recognized by the immune system as non-self 
and could therefore be efficient targets for cancer 
vaccines. However, the absence of immune tolerance, 
although necessary, is not sufficient for a neo-antigen 
to be an efficient target for a vaccine. Neo-antigens 
must have two additional properties. First, they 
must have a high affinity for the HLA molecules in 
order to be immunogenic and second, they must 
be naturally processed by the proteasome/TAP 
machinery and presented at the surface of tumor 
cells. There are two functionally distinct locations of 
an immunogenic mutation in the sequence of a neo-
antigen. Mutations may be located at the region that 
interacts with the TCR (TCR-contact mutation) 
creating a new non-self antigenic specificity. In 
this case the WT counterpart must exhibit high 
HLA affinity in order for the neo-antigen to be 
immunogenic. Alternatively they may be located 
at the region that interacts with the HLA and 
enhance the HLA affinity (HLA-contact mutation). 
In this latter case the mutation must result in an 
enhancement of the constitutively low affinity of the 
WT peptide for the HLA, that is the basis for this 
WT peptide to be ignored by the immune system 
thereby disallowing the self-tolerance process. 
There is now a body of evidence that neo-antigens 
may play an important role in tumor evolution and 
might be efficient cancer vaccines. Indeed, naturally 

occurring T cells infiltrating tumors are directed 
towards neo-antigens (4). The presence of these 
tumor infiltrating T cells (TILs) is associated with 
increased survival (5-8). Moreover, the number and 
the frequency of TILs are related to the number 
of mutations that in its turn defines the number of 
detectable neo-antigens (9). Microsatellite unstable 
colorectal cancers that accumulate mutations within 
DNA repeat sequences, because of defects of the 
DNA mismatch repair system, are known to have 
a better prognosis and a more dense intratumor T 
cell infiltration than microsatellite stable colorectal 
cancers (10). Finally, patients with at least one 
predictable immunogenic mutation show increased 
overall survival (9). The efficacy of neo-antigen based 
vaccines has been demonstrated in preclinical models 
in mice and in clinical studies in humans. Vaccination 
of mice with two Reps1 and Adpgk derived neo-
antigens induced a protective tumor immunity, as 
strong as the immune checkpoint inhibitors (11). In 
humans adoptive transfer of TILs containing a high 
number of CD4 cells specific for a class II restricted 
neo-antigen led to partial regression of lung 
metastases in patients with cholangiocarcinoma (12).  
In another study transfer of TILs containing T 
cells specific for a melanoma neo-antigen led to a 
complete response (13). Finally, neo-antigen loaded 
dendritic cells induced a strong immune response in 
three melanoma patients (14). The presence of neo-
antigens is also related to the efficacy of the immune 
response checkpoint inhibitors (15). Immune 
response checkpoint inhibitors are more efficient 
in tumors with high mutation load and presence 
of TILs that recognize neo-antigens. The higher 
the mutation load the higher the frequency of neo-
antigen reactive TILs and the stronger the response 
to these inhibitors. In fact it has been suggested that 
predicted immunogenic neo-antigens correlate with 
clinical benefit from immune response checkpoint 
inhibitor treatment (16).

One of the main issues of the use of neo-antigens is their 
identification. Whole exome sequencing coupled with either 
mass spectrometry or computational predictive models for 
HLA-I binding affinity and proteasome cleavage followed 
by in vitro validation are the two main approaches used to 
date. Using these approaches some potentially immunogenic 
neo-antigens have been identified both in mouse and 
human tumors. For instance, from 1,290 mutations  
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in the MC-38 murine tumor, seven neo-antigens were 
identified by mass spectrometry but only two of them were 
immunogenic (17). Moreover, in the MCA murine tumor 
two potentially immunogenic neo-antigens were identified 
from 2,200 point mutations, using MHC binding affinity 
and proteasome cleavage predictive models (11). In humans 
potentially immunogenic mutations were detected in only 
181 of the 515 tested patients (median of 3 mutations per 
patient) (9). Finally, two neo-antigens were identified by 
mass spectrometry among 1,019 mutations in melanoma 
patients (18). From these studies it would appear that 
immunogenic mutations are relatively rare and a small 
minority of total mutations (9). However, this conclusion 
was not confirmed by two studies showing that neo-antigens 
are present in 9 out of 10 gastrointestinal cancers and that 
in breast and colorectal cancer a new neo-antigen could 
be generated for every ten mutations (19,20). The relative 
rarity of potentially immunogenic neo-antigens is easily 
explained. For TCR-contact mutations the WT counterpart 
must already exhibit a high HLA affinity and the mutation 
must be a non-conservative amino acid substitution in order 
to create completely new non-self antigenic specificity. 
Scanning of an antigen, using HLA-I binding affinity 
predictive models, reveals a relatively low number of 
peptides with a predicted high HLA-I binding affinity. This 
is particularly true for peptides bound to HLA-I molecules 
that require the peptide to have quite rare residues at 
primary anchor positions in order to bind with high affinity 
(for example peptides bound to HLA-B7 that must have 
only a proline in the primary anchor position 2). For the 
HLA-contact mutations, these mutations must be located at 
the primary or sometimes at the secondary anchor positions 
and must introduce a favorable amino acid to replace a 
non-favorable one. Given the limited number of favorable 
amino acids, especially for some HLA-I molecules, the 
frequency of putative immunogenic neo-antigens must be 
very low. Moreover, these mutations, especially those that 
concern the secondary anchor motifs, must preserve the 
conformation of the peptide region that interacts with the 
TCR. This is particularly important in order to target not 
only mutation harboring tumor cells but also tumor cells 
that may miss the mutation that generated the neo-antigen.

Although neo-antigens seem to be extremely promising 
for developing efficient cancer vaccines several issues should 
be addressed.

(I)	 Their use may be limited by the genetic heterogeneity 
of tumors. The analysis of the cancer genome has 
revealed that tumor mutation landscape is extremely 

variable among patients, among different lesions of 
the same tumor and even among different regions 
of the same lesion (3,21). This means that it is 
likely that neo-antigens are not expressed by all 
the lesions of the same tumor. Neo-antigen-free 
lesions could therefore escape neo-antigen induced 
immune responses. This is particularly true for neo-
antigens generated by TCR-contact mutations. 
Neo-antigen specific T cells could not recognize the 
WT counterpart expressed in the neo-antigen-free 
lesions. This issue may not concern HLA-contact 
mutations, provided that the WT counterpart is 
naturally processed by tumor cells;

(II)	 Their identification is time consuming and may be 
very expensive. Although significant progress was 
recently done in genome sequence, neo-antigen 
identification still requires several weeks when it is 
done in fully specialized research centers. Moreover, 
it requires adequate biopsy material that is not 
always available. This material can easily be obtained 
from accessible tumors, such as melanoma, but 
much less easily from other tumors, especially those 
where diagnosis in several clinical centers is based 
on cytology material containing few tumor cells. 
Moreover, neo-antigen identification requires fully 
qualified laboratories near to the bed of the patient. 
Vaccination with patient specific neo-antigens might 
therefore be a treatment that would be applied only 
in specialized centers, far from being a standard 
treatment given worldwide. The commercial failure 
of the prostate cancer vaccine Sipuleucel-T that uses 
the patient own dendritic cells shows that this highly 
personalized treatment approach may face some 
non-scientific barriers that are difficult to overcome. 
Another issue deals with their clinical development. 
Since neo-antigens are patient specific and can 
only be used for the treatment of the neo-antigen 
expressing patients, neo-antigen based vaccines 
can be considered to be an anticancer treatment 
approach rather than an anticancer drug. There will 
be as many different vaccines as the patients to be 
treated. It will be virtually impossible to evaluate 
potential toxicity and efficacy of the patient-specific 
vaccines before their approval as cancer treatments. 
And it will therefore be necessary to revise the 
classical drug clinical development and put in place 
new clinical development models adapted to these 
new cancer treatments.
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The complexity of these challenges raises the following 
question: can we find neo-antigen like vaccines that share 
all the neo-antigen properties (escaping self-tolerance and 
immunogenicity) but are not confounded by the issues 
discussed above?

Optimized cryptic peptides

The various peptides derived from the processing of 
a given antigen are not equally presented by antigen 
presenting cells. Two classes of peptides can be defined: the 
immunodominant and the cryptic peptides. For peptides 
presented by the HLA-I molecules, this distinction 
depends mainly on their affinity for the HLA-I (22). 
Immunodominant peptides exhibit a high affinity and form 
stable peptide/HLA-I complexes, while cryptic peptides 
exhibit a low affinity and form unstable peptide/HLA-I 
complexes. Given the strong correlation between HLA-I 

affinity and immunogenicity, immunodominant peptides 
are immunogenic, while cryptic peptides are not (23). We 
and others have previously demonstrated that dominant 
and cryptic peptides from self-proteins are not equally 
involved in the self-tolerance process. Tolerance to self 
antigens, such as TAA, concerns immunodominant rather 
than cryptic peptides (24-34). As a consequence the T 
cell repertoire that is available to be stimulated by TAA-
derived immunodominant peptides is limited and composed 
mainly by T cells with low affinity for the antigen (Figure 1).  
Immunodominant TAA-derived peptides, although 
potentially immunogenic because of their high HLA-I 
affinities, are not highly immunogenic because the specific 
T cells repertoire has been rendered tolerant. 

The inability of immunodominant TAA-derived peptides 
to induce an antitumor immunity has been demonstrated 
in several preclinical models. We have previously shown 
that vaccination of HLA-A*0201 transgenic mice with two 

Figure 1 Immune self-tolerance (clonal T cell deletion in the thymus) to immunodominant and cryptic self-peptides.
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immunodominant HLA-A2 restricted peptides derived from 
the TERT TAA failed to induce an antitumor protective 
immunity (Figure 2). Similar results were obtained with two 
immunodominant peptides derived from the HER-2/neu 
TAA (Figure 2) (28). These studies came as a confirmation 
of the claim made by others that an efficient antitumor 
immunity cannot be induced by immunodominant peptides 
when using different mouse models (35-41). This also 
explains why all cancer vaccines tested in clinical studies 
to date failed to show clinical benefit. All of these vaccines 
targeted TAA immunodominant peptides. 

In contrast to immunodominant peptides, cryptic 
peptides escape, completely or partially, self-tolerance. This 
was first shown by Cibotti et al. (24). Using a transgenic 
mouse expressing hen-egg lysozyme as self-antigen we 
showed that there is an hierarchy in the tolerance to self-
peptides, and that tolerance to subdominant/cryptic 
peptides is partial or completely absent. More recently we 
showed that HLA-A*0201 transgenic mice are not tolerant 
to HLA-A*0201 restricted cryptic peptides from the  
TERT (28). These observations were confirmed by others in 
different mouse models (31-34,42). This means that cryptic 
peptides from self-antigens are considered by the immune 
system as non-self. The absence of tolerance to cryptic 
self-peptides does not create any risk of autoimmunity,  
since cryptic peptides because of their non-immunogenicity 
are ignored by the immune system. This also means that 
the T cell repertoire specific for the TAA-derived cryptic 

peptides is fully available to be mobilized by cryptic 
peptide targeting vaccines and contains high affinity T cells 
(Figure 1). This is extremely important because an efficient 
antitumor immunity requires the stimulation of high affinity 
T cells.

Although TAA-derived cryptic peptides can be 
considered by the immune system as non-self, their use as 
cancer vaccines must overcome their non immunogenicity 
(23,43). Cryptic peptides are non immunogenic because 
they exhibit a low HLA-I affinity. Enhancement of their 
immunogenicity is a prerequisite for cryptic peptides to 
be used as cancer vaccines and such enhancement can 
be achieved by the improvement of their HLA-I affinity. 
It is well known that the affinity of the HLA-I/peptide 
interaction depends on the presence of favorable residues in 
well-defined positions called primary and secondary anchor 
positions. The simplest way to increase HLA-I affinity 
would be to introduce HLA-I binding favorable amino 
acids in the primary and secondary anchor positions of the 
cryptic peptide sequence. Primary anchor positions that 
play a major role in defining the strength of the HLA-I/
peptide interaction are located in the two extremities of 
the peptide (position 2 and position 9/10). This is true for 
peptides bound to almost all HLA molecules. In contrast 
the favorable residues in these positions are HLA-I 
specific. As an example, high affinity peptides bound to 
HLA-A*0201 have a hydrophobic residue (M, L, I, V) in 
position 2 and L or V in position 9, while high affinity 

Figure 2 HLA-A*0201 transgenic HHD mice were vaccinated with two immunodominant HER-2/neu-derived and two immunodominant 
TERT-derived peptides. Seven days later TERT vaccinated mice were grafter with HLA-A*0201 expressing EL-4HHD tumor cells and 
HER-2/neu vaccinated mice were grafted with HLA-A*0201 and HER-2/neu expressing EL-4HHD/HER-2 tumor cells.
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peptides bound to HLA-B*0702 have a proline in position 
2 and a L in position 9. Secondary anchor motifs are more 
randomly located in the sequence of peptides bound to 
different HLA molecules. Increasing affinity for HLA-I by 
introducing sequence modifications is necessary in order 
to render cryptic peptides immunogenic (optimized cryptic 
peptides) but these sequence modifications must preserve 
the conformation of the peptide segment that interacts with 
the TCR. Only under this condition will T cells that are 
stimulated by the immunogenic optimized cryptic peptides 
recognize the WT counterparts that are presented by tumor 
cells. Our previous work with HLA-A*0201 restricted 
cryptic peptides showed that substitution of the first residue, 
whatever this residue might be, by a tyrosine enhances 
HLA-A*0201 binding affinity of almost all the HLA-A*0201 
restricted cryptic peptides (43). This is illustrated in Figure 3. 
Forty-seven WT cryptic peptides from different TAA and 
their optimized variants were tested for their binding affinity 
for HLA-A*0201 and their immunogenicity. As expected all 
WT cryptic peptides exhibited a low binding affinity and 
were non-immunogenic. In contrast, 42 of the 47 optimized 
variants had a high affinity and were immunogenic. 
Importantly, T cells stimulated by the optimized cryptic 
variants cross-recognized the WT counterpart. Similar 
results were obtained with cryptic peptides presented by 
two other common HLA molecules, the HLA-B*0702 
and the HLA-A*2402. In both cases, affinity enhancement 
required modifications of the peptide sequence in position 9 
and/or in position 1 (data not shown). 

Using an HLA-A*0201 expressing mouse model, we 

showed that vaccination with optimized cryptic peptides 
from TAA induces tumor immunity. In fact, mice vaccinated 
with four optimized cryptic peptides from two different 
TAA (HER-2/neu and TERT) developed protective tumor 
immunity (Figure 4) (28). 

Targeting cryptic tumor peptides by using heteroclitic or 
xenogeneic vaccines has been described by others (37-41, 
44-50). It is noteworthy that in the case of xenogeneic 
vaccines, the immune response was directed towards cryptic 
tumor peptides and was induced by naturally occurring 
optimized variants of the tumor cryptic peptides that 
are present in the sequence of the xenogeneic vaccines. 
Moreover, one of the two Db-restricted immunogenic neo-
antigens identified from MC-38 tumors although resulting 
from an TCR-contact mutation (mutation in position 4 
that has two anchor residues in its neighborhood, a primary 
anchor residue in position 5 and a secondary anchor residue 
in the position 3) has a significantly higher Db affinity 
than the WT counterpart that exhibits an intermediate 
Db affinity (17). Finally, three out of the 17 immunogenic 
neo-antigens identified in cancer patients appear to be 
natural optimized cryptic peptides. They exhibit a strong 
HLA-I affinity (two peptides for HLA-A*0301 and one for 
HLA-A*2402), while their WT counterpart had a very low 
affinity. In all three cases neo-antigens were created by an 
HLA-contact mutation (51).

In conclusion, optimized cryptic peptides from TAA 
had the two main properties of the neo-antigens: they 
escape self-immune tolerance and are immunogenic. They 
can therefore be considered as universal neo-antigen like 
peptides (Table 1).

Very importantly, optimized cryptic peptides from TAA 
not only share the properties of the neo-antigens but they 
are not affected by the two issues that can be barriers to the 
use of neo-antigens as cancer vaccines: 

(I)	 Their use is not limited by the genetic heterogeneity 
of tumors, especially if the TAA targeted by an 
optimized peptide based vaccine is a universal 
antigen involved in the tumorigenesis and/or the 
survival of tumor cells, such as TERT and survivin. 
All tumor cells express these universal antigens and 
the probability of antigen loss is relatively low;

(II)	 They are not patient-specific and they do not 
need to be identified in each patient individually. 
Optimized cryptic peptides look more like classical 
anticancer drugs, which can undergo a classical 
clinical development leading to a broad-spectrum 
patient treatment.

Figure 3 HLA-A*0201 binding affinity and immunogenicity of 
HLA-A*0201 restricted WT cryptic peptides and their optimized 
variants. Red spots: WT cryptic peptides. Green spots: optimized 
cryptic peptides.
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Vx-001 vaccine

Vx-001 is the first tumor vaccine based on optimized cryptic 
peptides. It targets the universal tumor antigen TERT 
(TElomerase Reverse Transcriptase) that is expressed 
by more than 85% of tumors of different histology and 
origin (52-54) and can be used for the treatment of 
cancer patients expressing HLA-A*0201 (43–45% of the 
population). Vx-001 is composed of two peptides of nine 
amino acids: the WT cryptic TERT572 and its optimized 
variant TERT572Y. These two peptides are administered 
separately, along with the adjuvant Montanide ISA51®VG. 
The optimized immunogenic TERT572Y is given in the 
first two vaccinations, in order to trigger a large immune 
response. The WT TERT572 is given in the following 
vaccinations, in order to select among all the TERT572Y 
stimulated T cells those with the highest specificity for the 
WT TERT572 that is presented in the surface of tumor 
cells associated with the HLA-A*0201. This particular 

protocol was validated in mouse models and in a clinical 
study in cancer patients (55). Patients were vaccinated two 
times with the optimized TERT572Y and then separated 
into two groups. The first group received four additional 
vaccinations with the same optimized TERT572Y, while the 
second received four vaccinations with the WT TERT572. 
Comparison of the affinity of WT TERT572 specific T 
cells generated in these two groups revealed that affinity was 
higher in the patients that received two vaccinations with 
the optimized TERT572Y followed by four vaccinations 
with the WT TERT572. These results may explain 
previous results obtained with the gp100 209M peptide that 
showed that multiple vaccinations with the optimized gp100 
209M peptide stimulates T cells that in their majority are 
unable to efficiently recognize the WT gp100 209 and 
gp100 expressing tumor cells (56-58). 

Vx-001 has been tested in a large phase I clinical study 
with 116 patients with different types of tumors, mainly 
NSCLC, prostate, breast and colorectal cancer (59-61). 
Seventy percent of the patients had metastatic disease and 
70% had progressive disease when entered the study. All 
patients but one (a hepatocellular carcinoma) had received 
at least one previous treatment. The results of this study 
showed that Vx-001 is safe, since only grade I/II vaccine 
related toxicities were observed, mainly local skin reactions 
at the site of injection. This reaction was due to the adjuvant 
Montanide ISA51®VG. They also showed that Vx-001 is 
highly immunogenic. An IFNg ELISpot assay was used for 
all vaccinated patients to detect WT TERT572 specific 
T cells. In some patients immune response was confirmed 

Figure 4 HLA-A*0201 transgenic HHD mice were vaccinated with two optimized cryptic HER-2/neu-derived and two optimized cryptic 
TERT-derived peptides. Seven days later TERT vaccinated mice were grafter with HLA-A*0201 expressing EL-4HHD tumor cells and 
HER-2/neu vaccinated mice were grafted with HLA-A*0201 and HER-2/neu expressing EL-4HHD/HER-2 tumor cells.
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Table 1 Properties of neo-antigens and TAA-derived optimized 
cryptic peptides

Properties Neo-antigens
Optimized cryptic 
peptides from TAA

Escaping self-tolerance Yes Yes

Immunogenicity Yes Yes

Broad spectrum application No Yes

TAA, tumor associated antigens.



Menez-Jamet et al. Optimized tumor cryptic peptides in cancer vaccination

© Annals of Translational Medicine. All rights reserved. Ann Transl Med 2016;4(14):266atm.amegroups.com

Page 8 of 11

using TERT572Y specific tetramers and a perforin ELISpot 
assay. WT TERT572 specific T cells were detected after 
the second vaccination in half of the evaluable patients (62), 
while 68% of the evaluable vaccinated patients developed 
an immune response after the sixth vaccination. In some 

patients the response was maintained by boost vaccinations 
as long as five years after the first vaccination. 

Vx-001 showed signs of clinical activity. Four objective 
responses (one complete and three partial) were observed in 
breast cancer, NSCLC and hepatocarcinoma patients. Very 
interestingly, the partial response observed in the metastatic 
hepatocarcinoma patient who received Vx-001 as first 
line treatment lasted five years and the patient progressed 
when the WT TERT572 specific T cells were no more 
detectable. Moreover, long lasting (more than six months) 
disease stabilization was observed in more than 40% of the 
NSCLC patients. Survival of the NSCLC patients who 
entered the study with disease control was 18 months, much 
longer than expected from the historical controls (Figure 5).  
Finally, we observed a correlation between immune and 
clinical response. NSCLC patients with a WT TERT572 
specific immune response survived longer than patients who 
failed to mount such an immune response (Figure 6). 

Vx-001 is currently tested in a randomized phase IIb 
clinical trial in metastatic or recurrent NSCLC patients who 
experienced disease control after four cycles of platinum 
based chemotherapy. Patients need to be HLA-A*0201 
positive and their tumor must express TERT. The primary 
objective of the study is overall survival. Two hundred 
twenty one patients are randomized (1,400 patients are 
screened) in a 1:1 ratio in 70 sites located in eight European 
countries (63). The study is ongoing and is expected to be 
completed in September 2016.
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